
Modeling Resource-Coupled Computations

Mark Hereld,†* Joseph Insley,† Eric Olson,* Michael E. Papka,†*
Thomas Uram,† Venkatram Vishwanath†

†Argonne National Laboratory, *The University of Chicago
 {hereld, insley, eolson, papka, turam, venkatv}@mcs.anl.gov

ABSTRACT

Increasingly massive datasets produced by simulations beg the
question How will we connect this data to the computational and
display resources that support visualization and analysis? This
question is driving research into new approaches to allocating
computational, storage, and network resources. In this paper we
explore potential solutions that couple system resources in new
ways.

Examples of what we mean by resource-coupled computations
abound. For example, remote visualization is an activity that may
couple data and large computation resources at the shared facility
to client software and display hardware at the remote site. In situ
analysis and visualization contemporaneously merges simulation
and analysis onto the shared resource of the supercomputing
platform. Co-analysis approaches seek to directly couple
simulations running on a primary supercomputer to live analysis
running on an optimized visualization and analysis platform over
a high-performance network.

Consequently, we are working on a systems approach to modeling
the end-to-end activity of extracting understanding from
computational models. In this paper we present our methods and
results from experiments.

Categories and Subject Descriptors
C.0 [Computer System Organization]: General – modeling of
computer architecture, system architectures. C.2 [Computer
Systems Organization]: Computer-communication networks –
data communications. C.4 [Computer Systems Organization]:
Performance of systems – design studies, measurement
techniques, modeling techniques, performance attributes. D.4.8
[Operating Systems]: Performance – measurements, modeling
and prediction.

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
High-performance computing, data intensive computing, coupled
computations, simulation.

1. INTRODUCTION
Large-scale computational science requires substantial hardware
resources for simulation, data storage, and data analysis. Current
systems supporting National Science Foundation (NSF) and
Department of Energy (DOE) scientific programs include
configurations at the National Center for Supercomputing
Applications (NCSA), the Texas Advanced Computing Center
(TACC), the National Institute for Computational Sciences
(NICS), Argonne National Laboratory (ANL), Oak Ridge
National Laboratory (ORNL), and Lawrence Berkeley National
Laboratory (LBNL). The massively parallel computational
components are supported by parallel file systems capable of
moving several tens of gigabytes per second and are connected to
global backbone networks that can carry about a tenth of that
traffic.

The problem of analyzing datasets produced by large simulation
has spawned a number of ideas. The traditional approach to data
analysis and visualization, namely, postprocessing, finds its data
in local or networked storage, perhaps distributed widely across
many storage resources. Postprocessing is what is commonly
thought of when discussing visualization and analysis.
Postprocessing happens after the simulation has completed or at
least after data has been written to disk. Much of the visualization
research done within the community is focused on use within a
postprocessing application. The postprocessing stage in the
pipeline has been packaged into many well-known environments
such as Matlab, Mathematica, and R, as well as more HPC-
oriented environments such as VisIt [http://www.llnl.gov/visit/]
and ParaView [http://www.paraview.org/]. But issues of data
scale and the cost of staging the data to and from disk between
creation and analysis steps have prompted research into other

Figure 1. Live streaming of 10 Gbps from Argonne National
Laboratory to Portland, OR, at Supercomputing 2009.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

strategies. In situ approaches take the view that the data will never
be more available than it is at the moment it is created by the
simulation. Other research aims to insert analysis in tandem with
the I/O operations required to save data to disk. With tightly
coupled computational systems one can consider real-time co-
analysis with data shipping across the high-performance
interconnect.

We define in situ analysis as analysis and/or visualization code
that runs as part of the simulation code at the same time as the
simulation. This approach is receiving much attention within the
high-performance computing community as perhaps the only way
to analyze future-generation large-scale datasets. An example of
in situ analysis can be found in the efforts Yu et al. [10], and an
overview is presented by Ma [8]. Also relevant to the algorithm
performance piece of the in situ problem is the long train of work
in scaling parallel visualization algorithms. These analyses and
algorithms have not yet been applied in situ, however; and much
work remains to be done to characterize co-resident performance
with a running simulation.

We define co-analysis as processing that runs in parallel with the
simulation but not necessarily on the same resources or even at
the same site. CUMULVS [6] is an example of a co-analysis

approach that provides means for interacting with and steering a
running parallel simulation. LambdaRAM [5][9] enables data
coupling between clusters interconnected via high-speed optical
networks in order to facilitate co-analysis. LIVE [1] provides a
means for connecting to a running simulation in order to monitor
or analyze data generated by the application in real time. Also
related is work aimed at connecting separated resources [2][3][4]
or work such as the Model Coupling Toolkit, which enables
construction of multiphysics, parallel coupled models [7].

Figure 2 shows many of the current and envisioned pipeline
configurations that might support high-performance coupled-
resource computation. The nominal pipeline configuration in
Figure 2(a) illustrates the case wherein the simulation stores
results to disk and an analysis application works from disk.
Ideally, all communication is carried out over very high speed
switch fabric. When the simulation process can communicate
directly over the facility network with nominal bandwidth of
terabits per second, advanced analysis can be performed on
optimized hardware, as depicted in Figure 2(b). The desirable but-
challenging configuration shown in Figure 2(d) enables high
performance computational science on resources spread over a
wide-area network. A demonstration of this, shown in Figure 1, is
described later in the text.

Two main questions drive the research:

• Where in the pipeline is the right place to do analysis
and visualization?

• Will these capabilities improve time-to-discovery?

These lead to a number of corollary questions that focus on
particular scenarios, hypotheses, and issues, including the
following:

• Is it better to carry out some of the analysis in situ with
the simulation or to move the data to a separate analysis
process?

• What are the circumstances where we can speed
application by offloading I/O quickly, and how often do
they arise?

• Under what circumstances can wide-area co-analysis be
effective given the lower bandwidth of external
network?

The effort described in this paper touches many portions of the
computational science pipeline. Before we can answer these
bigger, more integrative questions, we need to understand the cost
of performing data analysis or partial analyses at the various
points in the pipeline—in terms of time, bytes, and dollars. How
we are attacking this question is the subject of this paper.

To get answers, we are designing models at a coarse granularity
that enable high-level assessment of opportunities and potential
benefits. In the following sections, we present our preliminary
efforts to gather and analyze data from a number of sources before
digging into building models, designing experiments, and testing
measurements against models.

2. Multipronged Approach
In this section we describe our work in progress to measure,
characterize, and model current supercomputing resources in
order to understand how future ultrascale systems will be used.

(a)

(b)

(c)

(d)

Figure 2. Some of the many useful computational pipeline
configurations: (a) nominal pipeline configuration, (b)
simulation process communicates directly over the facility
network with optimized analysis hardware, (c) monitoring
clients attached to the pipeline, and (d) high-performance
computational science on resources spread over wide area
network.

We target the idealized configurations of the computational
pipeline shown in Figure 2 in terms of the basic properties of the
hardware, application software, and analysis software components
of the system.

2.1 About Applications

Understanding an application’s run-time behavior is critical in
order to gain insight into when and where analyses might be
performed. Key parameters include the application’s
computational requirements, its memory usage, and the data
movement patterns.

The amount of data emitted by a given application per time step,
per data type, and/or per checkpoint cycle will provide the basis
for estimating time-dependent memory requirements for our
models.

We want to understand how in situ approaches compare to co-
analysis or how much automatic analysis and of what sort can be
overlapped with the running simulation. For this investigation we
will need estimates of how expensive the relevant computations
(both in the simulation and in the analysis) are on each of the
computational resources.

A key determinant of the level of success achieved by these
methods will be the extent to which data can be moved quickly
from the simulation to the analysis. This will rely on the amount
of raw network bandwidth available and the effectiveness with
which it is used.

For some application scenarios, latency will be an important
parameter in our models; we are thinking here of interactive
applications or those with some monitoring. Its importance in
other scenarios will depend on the granularity of the elements in
the data stream and to what extent data must be reorganized
across the cluster nodes.

Coarse-grained data patterns will provide critical insight into
which parts of the data stream are most constraining and where
opportune windows provide space for overlapped analysis. We
will capture aspects of the spacing, data bulk, and data rates in our
models.

2.2 About Resources

Large-scale scientific applications have demonstrated scalable
performance on today’s architectures. However, based on trends
extracted from available market literature (as listed
in Table 1), we can expect that future architectures
will require that today’s applications and middleware
scale their performance in ways previously
unexplored. Key trends in future architectures
include the large number of processing cores on a
chip as well as the increase in the network bandwidth
throughout the various subsystems. Energy
efficiency is another key criterion listed in Table 2
for future systems. Thus, a critical component for
scalable performance will be the development of new
techniques for efficient utilization of end-system
architectures and resources.

For our models and experiments to be most
beneficial, we will organize them around a set of
generalized architectures including mixtures of high-
performance computing platforms, visualization and

analysis clusters, parallel file systems, high-performance
switching interconnection hardware, and wide-area networks. This
approach will enable us to consider tightly coupled systems as
well as loosely coupled federations of systems.

The primary resources considered in the model will include the
state-of-the-art HPC systems currently deployed, in order to (1)
allow us to test the widest range of performance parameters, (2)
prototype useful solutions to current problems, and (3) make more
accurate extrapolations to future hardware systems. The resources
include those at the Argonne Leadership Computing Facility
(ALCF). The principal components of the system to be used as a

Table 1. Trends in bandwidth. Data compiled from the
released products of various hardware vendors and their
future projected roadmaps.

Bandwidth Trends (Gbps) 2007 2009 2011
Disk Drive 1 3 6

Network Interface 10 30 100

Memory 100 40 384

GPU Memory 500 1000 2000

Processor Interconnect 51 120 200

Wide Area 10 40 100

Table 2. Trends in node architecture. Data compiled from
the released products of various hardware vendors and
their future projected raodmaps.

 CPU GPU
 2007 2009 2011 2007 2009 2011

State of the Art Opteron Nehalem Larabee Nvidia
8800

ATI
4870

ATI
 6800

Core per
Processor

4 8 12 256 800 4000

Computational
Efficiency

GFlops / Proc
16 54 200 256 1000 4000

Energy
Efficiency

GWatts / Proc
0.16 0.5 2 2.5 10 40

Figure 3. Architecture of the coupled resources in the Leadership
Computing Facility at Argonne National Laboratory.

generic testbed are shown in Figure 3. Intrepid is a 160K core
IBM Blue Gene/P system with peak performance of 557 TF, 80
TB local memory, and 640 I/O nodes each with 4 cores,
connected to the switching interconnect with aggregate 6.4 Tbps.
Eureka comprises 100 servers with 800 Xeon cores, 3.2 TB
memory, and 200 nVidia Quadro FX 5600 GPUs. Eureka is
connected to the switch with 100 links at 10 Gbps each. The file
server is connected to the switch with 128 links at 10 Gbps each.

Models and test results on this system will provide insight into
performance of the co-analysis techniques to be studied for a
range of current systems, as well as a handle on how future
systems might perform. First, the high-end system is in some
sense a proxy of more modest systems of the future. The terabit
bandwidth of the switching fabric will represent global backbone
bandwidths in coming years. Second, experiments run on this
system can be throttled at various points to reflect expected
performance for a range of currently available systems.

2.3 About Analysis

Our goals in understanding the run-time behavior of analysis and
visualization codes is analogous to our interest described in
application codes.

Several widely used data analysis and visualization applications
serve the scientific HPC community. These include VisIt and
ParaView, which can execute large-scale parallel visualizations;
Matlab; R; and a number of more specialized, domain-tailored
packages. Some researchers find that their analysis and
visualization can be done only by customized applications. These
are sometimes implemented by using high-level toolkits such as
vtk (http://www.vtk.org/), the visualization toolkit that is the basis
for both ParaView and VisIt. An example of an even more
homegrown code is our own volume-rendering application, vl3,
which exploits GPU hardware to speed evaluation and
accumulation of transfer function modulated data along cast rays.
This is accomplished with custom GPU code.

We seek to understand how these examples behave on a range of
platforms. Hence, we will use modeling techniques similar to
those used in science application codes.

3. Current Efforts
Here we describe our current works in characterizing resource
usage by science and analysis applications, detailed performance
and scaling properties of algorithms, hardware performance
characteristics, and performance of computational science on
widely distributed resources.

3.1 Footprint Measurements

We want data about the properties and mix of jobs running on
Intrepid and Eureka, including data about how these jobs use the
storage system. From this data we will be able to understand
better what kinds of footprints typical and extreme science
problems leave on the mix of resources in a high-performance
computing facility: simulation cycles consumed by runs and
campaigns, amount and creation patterns of data produced by
simulations, postprocessing access patterns for analysis and
visualization, and cycles consumed in data exploration and
reduction. This data is not widely available and has not been
systematically collected and studied.

Toward this goal, we have collected into databases information
available from system logs on Intrepid and Eureka. The
automating scripts for this ongoing metadata collection are in
place and operating. We are mining this information for statistics,
trends, and norms to help guide our modeling and design
activities.

We have begun work to understand how one simulation using a
multiphysics code might benefit from a co-processing approach.
Consider routine simulations of Type 1a supernovae currently
being run on Intrepid as part of the DOE INCITE program. An
example of coarse-grained data patterns is shown in Figure 4. The
code includes modules for gravitation, nuclear chemistry, and
magnetohydrodynamics. It is highly configurable and can be used
to solve problems from laboratory-scale to cosmology; hence,
performance characteristics vary greatly from problem to
problem.

These simulations are generally run over a period of several days
to a week in twelve-hour jobs. Each run is marked at intervals of
about 90 minutes by a checkpoint that enables the job to be
restarted from that point in the event of system failure; it also
provides much of the data used in the subsequent analysis. In
addition to these checkpoint files, the application writes particle
and plot files containing different kinds of data. Figure 4 shows
the pattern of these data-writing operations.

Table 3 fills in the details of actual file sizes and numbers for each
of the file types generated. In this case the particle file writes take
a disproportionate fraction of the I/O time despite the relatively
small fraction of the dataset invested in them. These blocking I/O
operations take as much as 30 percent of the total execution time.
The numerous particle files generate 500 GB over the course of
the simulation and take a disproportionate fraction of the overall
I/O time but are amenable to optimizations not yet implemented in
the simulation. The plot files contain the bulk of the data written

Figure 4. Example showing the high level I/O pattern of one
particular astrophysics simulation. Three separate types of
files are written at different intervals over the course of the
simulation cycle: particle files, plot files, and checkpoint files.
Shown is one cycle ending with a checkpoint.

Table 3. Example data footprint.

File Type File Size #files #files Data Size
 / Run / Sim

Particle ~ 131 MB ~ 500 5000 500 GB

Plot ~ 13 GB 40-90 800 10 TB

Checkpoint ~ 42 GB 5-10 100 4.2 TB

during the simulation, some 10 TB, while the checkpoint files
produce almost a third of the total.

From this information we see several opportunities that might be
exploitable. First, to the extent that the I/O takes more time than
available bandwidth would imply, we might improve overall
application execution time if we can offload the I/O to another
compute resource. Second, this same system might provide value
added by overlapping analysis with the running simulation.

3.2 Application Performance Measurements

We are studying the performance characteristics of vl3, mentioned
briefly above, because it can take unique advantage of the GPU.
Hence, we can study in detail the possible advantages of
specialized hardware acceleration with purely software rendering.
By modeling it and testing in on Intrepid (without the aid of the
acceleration) and on Eureka, we gain insight into the tradeoffs
between hardware and software execution. We have instrumented
the code using the same algorithm without the benefit of hardware
acceleration.

The parallel program casts rays through a very large data volume,
evaluating a transfer function as it accumulates translucent
coloration depending on the sampled data values. Compositing the
results from all processors into a single image requires data
exchange over the network. The resulting frame can be written to
disk or sent to a remote display system by using as many parallel
streams as necessary.

To date, we have conducted a number of experiments with vl3.
For example, we have performed scaling measurements on Eureka
using the GPU acceleration of the ray casting with 128 processes
running on 64 nodes. On this machine we have been able to
render data cubes as large as 6K on a side. We have also
performed scaling measurements with vl3 on Intrepid, casting
rays in software. Furthermore, we have run vl3 in an interactive
test of high-performance rendering from a remote site over a
wide-area network (described below).

3.3 Internal Network Experiments

We are also characterizing performance of the new and
unconventional data path between Intrepid and Eureka. Whereas
both machines routinely exercise the path to the file servers in the
course of conventional parallel and serial I/O, the switching fabric
that enables these paths also offers the possibility for processes on
Intrepid to speak directly with processes on Eureka. Preparatory to
building and testing new APIs to enable these high-speed
communications, we are testing parallel streaming along that path.

Figure 5 depicts the network architecture for communication
between a Blue Gene/P compute node and a data analysis node.
There are 64 compute nodes in a partition and a single BG/P I/O
node (ION) for each partition. The compute nodes are connected

to the ION via a tree network with a bandwidth of 6.8 Gbps
between the compute nodes and the ION. The ION is connected to
the analysis node on a 10 Gbps network.

We have conducted initial bidirectional streaming experiments
between the ION and analysis node. From Figure 6 (top), we see
that as we increase the number of streams, the achievable
throughput increases. Increasing the streams beyond 4, however,
does not yield any significant improvement and could actually
lead to performance degradation because of the contention
between the various streams.

In order to stream data from the compute node to the data analysis
nodes, the compute node kernel forwards the system calls to the
I/O node. The ION then forwards the data onto the analysis node
using the CIOD daemon on the ION. As seen from Figure 6
(bottom), we are able to sustain a maximum bandwidth of 3.6
Gbps between a compute node partition and a data analysis node.
The approach results in 52% network utilization and is limited by
overhead of the forwarding in the ION.

Figure 7 depicts the performance of streaming as we scale the
number of Blue Gene nodes from 128 nodes (512 cores) to 4096
nodes (16K cores). Note the linear scaling in the performance of
streaming with the number of nodes. We are able to sustain 170

Figure 5. System setup for the internal network experiments.

Figure 6. Results for streaming between Intrepid (BG/P)
and Eureka. At top are results in each direction between a
single BG/P ION and a Eureka node (DA). At bottom are
the results from a BG/P compute node (behind the ION)
to a Eureka node.

Gbps on 4K nodes. This would enable one to stream the 42 GB
checkpoint data of the astrophysics application example from
Intrepid to Eureka in 2 seconds, much faster than current time
required to write the same data from Intrepid to storage.

3.4 Wide Area Experiments

And, finally, we are measuring and testing scenarios like that
introduced in Figure 3(d). Figure 8 lays out some of the
particulars of a recent test in which large datasets produced by a
simulation run on the Kraken supercomputer at the National
Institute for Computational Science at the University of Tennessee
was transferred to Argonne National Laboratory via a 10 Gbps
higher speed network over ESNet. They were then rendered at
interactive rates on the Eureka cluster at ANL and streamed live
to a large tiled display on the Supercomputing 2009 show floor in
Portland, OR.

Each simulation timestep created a 4K by 4K by 4K uniform grid
with several model variables in each of these 64 billion cells. One
four-byte variable, the density of ordinary matter in this
cosmology simulation, represented 256 GB of data. The rate that
these single time step chunks of data were produced by the
simulation was far slower than interactive – numbering several
frames per day. With two 10 Gbps links between Tennessee and
Illinois, that single timestep of one variable would take at least
200 seconds.

We had much better results using available bandwidth to stream
rendered results. For this experiment we added multi-streaming to
our vl3 rendering application. The 4K by 2K rendered interactive
stream was split into smaller tiles and shipped to Oregon over a 10
Gbps link. The link was generally fully subscribed by the multi-
stream while vl3 generating a few frames per second of live high-
resolution volume renderings. Although the control stream for
interaction was actually created at Eureka, implementing a light
control stream from the remote site would not be difficult.

4. Conclusions
In this paper we have described a range of circumstances of
critical interest to ultrascale computing which rely on efficient
collaboration between processing subsystems. We’ve dubbed
these resource-coupled computations. In situ methods couple

simulation and analysis in real time on a single shared compute
node. Remote visualization couples high-performance compute
and data resources to remote display clients. Co-analysis couples
two high-performance compute resources in real time.

We described details of one application’s dataset footprint to
illustrate opportunities for better overlapping of simulation and
I/O, offloading I/O to a co-processing platform, and real time data
analysis through co-processing. We then discussed several
components of our measurement effort – measurements of coarse
grain characteristics of simulation and analysis jobs running on
ALCF resources, synthesis of these measurements into project
footprints, early results from new streaming experiments that
connect the BG/P simulation resource to the analysis and
visualization cluster, and wide-area experiments.

Several opportunities may become feasible with co-processing
enabled by fast data transfer from the simulation to a high-
performance analysis cluster: mapping the Intrepid output data
flow to Eureka may speed up some applications; offloading data
organization and disk writes; transparent (and relatively free) co-
analysis; and data compression. As an accelerator and co-analysis
engine, a companion cluster such as Eureka might be considered
inexpensive at only 1-2% of the cost of a large supercomputer
such as Intrepid.

The work described in this paper aims to provide a system level
understanding of data exchange between collaborating
computational resources. It is informed by real computational
workloads across resources spanning the entire scientific
workflow. Our hope is to identify and develop new methods for
designing workflows that more effectively utilize available
computational resources by optimizing the end-to-end process.

5. ACKNOWLEDGMENTS
This work was supported by a Director’s Postdoctoral Fellowship
(V.V.); by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-06CH11357; and by TeraGrid, under National
Science Foundation Grant OCI-0504086. For helpful discussions
we acknowledge Tom Peterka, Rob Ross, Narayan Desai, David
Ressman, and William Scullin. For significant contributions to the
wide area interactive visualization experiments we acknowledge
Rick Wagner, Loren Wilson, Linda Winkler, Michael Norman,
Robert Harkess, Larry Smarr, and ESNET2.

6. REFERENCES
[1] Abbasi, H., Wolf, M., and Schwan, K. LIVE data workspace:

A flexible, dynamic and extensible platform for petascale
applications. In Cluster Computing, 2007 IEEE International
Conference on, pages 341–348, Sept. 2007.

Figure 7. Performance of multistream experiments from
Intrepid (BG/P) to Eureka.

Figure 8. Schematic of the Stargate demo at
Supercomputing 2009.

[2] Foster, I., Geisler, J., Gropp, W., Karonis, N., Lusk, E.,
Thiruvathukal, G., and Tuecke, S. Wide-area implementation
of the message passing interface. Parallel Comput., 24(12-
13):1735–1749, 1998.

[3] Insley, J. A., Papka, M.E, Dong, S., Karniadakis, G., and
Karonis, N. Runtime visualization of the human arterial tree.
IEEE Transactions on Visualization and Computer Graphics,
13(4):810–821, 2007.

[4] Johnsen, E., Bjrndalen, J.M., and Anshus, O.J. CoMPI -
configuration of collective operations in LAM/MPI using the
scheme programming language. In Bo Kgstrm, Erik Elmroth,
Jack Dongarra, and Jerzy Wasniewski, editors, PARA,
volume 4699 of Lecture Notes in Computer Science, pages
189–197. Springer, 2006.

[5] Krishnaprasad, N., Vishwanath, V., Venkataraman, S., Rao,
A., Renambot, L., Leigh, L., Johnson, A.E, and Davis, B.
Juxtaview - a tool for interactive visualization of large
imagery on scalable tiled displays. In CLUSTER, pages 411–
420, 2004.

[6] Kohl, J., Wilde, T., and Bernholdt, D. Cumulvs: Interacting
with high-performance scientific simulations, for
visualization, steering and fault tolerance. Int. J. High
Perform. Comput. Appl., 20(2):255–285, 2006.

[7] Larson, J., Jacob, R., and Ong, E. The model coupling
toolkit: A new fortran90 toolkit for building multiphysics
parallel coupled models. Int. J. High Perform. Comput.
Appl., 19(3):277–292, 2005.

[8] Ma, K. In situ visualization at extreme scale: Challenges and
opportunities. IEEE Computer Graphics and Applications,
29(6):14–19, 2009.

[9] Vishwanath, V., Burns, R., Leigh, J., and Seablom, S.
Accelerating tropical cyclone analysis using lambdaram, a
distributed data cache over wide-area ultra-fast networks.
Future Generation Comp. Syst., 25(2):184–191, 2009.

[10] Yu, H., Wang, C., Grout, R., Chen, J., and Ma, K. A study of
in situ visualization for petascale combustion simulations.
Technical Report CSE-2009-9, University of California at
Davis, 2009.

This government license must be at the end of the paper for review submission, but
removed before publication.

The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Government.

